80

GPU-Accelerated INT8 Quantization for KV Cache Compression in Large Language Models

Maanas Taneja
Purab Shingvi
Main:14 Pages
7 Figures
Bibliography:1 Pages
3 Tables
Abstract

The key-value (KV) cache in large language models presents a significant memory bottleneck during inference, growing linearly with sequence length and often exceeding the memory footprint of model weights themselves. We implement and evaluate GPU-accelerated INT8 quantization for KV cache compression, achieving 4×\times memory reduction with minimal accuracy degradation. We develop four CUDA kernel variants -- naive, tiled, coarsened, and vectorized -- and benchmark them across realistic workload sizes up to 1 billion elements. Our vectorized kernel achieves up to 1,694×\times speedup over CPU baselines while maintaining reconstruction error below 0.004 and attention score error below 0.1 even for 8K-dimensional heads. These results demonstrate that INT8 quantization provides a practical approach for reducing memory pressure in LLM inference with negligible computational overhead (6--58ms) and minimal impact on downstream model behavior

View on arXiv
Comments on this paper