37

Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models

Computational Intelligence and Neuroscience (CIN), 2018
Nouar AlDahoul
Aznul Qalid Md Sabri
Ali Mohammed Mansoor
Main:12 Pages
14 Figures
Bibliography:2 Pages
3 Tables
Abstract

Human detection in videos plays an important role in various real-life applications. Most traditional approaches depend on utilizing handcrafted features, which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods, which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for the human detection task. The pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with softmax and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high-performance Graphical Processing Unit (GPU).

View on arXiv
Comments on this paper