280

SoK: Understanding (New) Security Issues Across AI4Code Use Cases

Qilong Wu
Taoran Li
Tianyang Zhou
Varun Chandrasekaran
Main:14 Pages
25 Figures
Bibliography:6 Pages
23 Tables
Appendix:19 Pages
Abstract

AI-for-Code (AI4Code) systems are reshaping software engineering, with tools like GitHub Copilot accelerating code generation, translation, and vulnerability detection. Alongside these advances, however, security risks remain pervasive: insecure outputs, biased benchmarks, and susceptibility to adversarial manipulation undermine their reliability. This SoK surveys the landscape of AI4Code security across three core applications, identifying recurring gaps: benchmark dominance by Python and toy problems, lack of standardized security datasets, data leakage in evaluation, and fragile adversarial robustness. A comparative study of six state-of-the-art models illustrates these challenges: insecure patterns persist in code generation, vulnerability detection is brittle to semantic-preserving attacks, fine-tuning often misaligns security objectives, and code translation yields uneven security benefits. From this analysis, we distill three forward paths: embedding secure-by-default practices in code generation, building robust and comprehensive detection benchmarks, and leveraging translation as a route to security-enhanced languages. We call for a shift toward security-first AI4Code, where vulnerability mitigation and robustness are embedded throughout the development life cycle.

View on arXiv
Comments on this paper