72

MemoryGraft: Persistent Compromise of LLM Agents via Poisoned Experience Retrieval

Saksham Sahai Srivastava
Haoyu He
Main:9 Pages
1 Figures
Bibliography:2 Pages
Appendix:3 Pages
Abstract

Large Language Model (LLM) agents increasingly rely on long-term memory and Retrieval-Augmented Generation (RAG) to persist experiences and refine future performance. While this experience learning capability enhances agentic autonomy, it introduces a critical, unexplored attack surface, i.e., the trust boundary between an agent's reasoning core and its own past. In this paper, we introduce MemoryGraft. It is a novel indirect injection attack that compromises agent behavior not through immediate jailbreaks, but by implanting malicious successful experiences into the agent's long-term memory. Unlike traditional prompt injections that are transient, or standard RAG poisoning that targets factual knowledge, MemoryGraft exploits the agent's semantic imitation heuristic which is the tendency to replicate patterns from retrieved successful tasks. We demonstrate that an attacker who can supply benign ingestion-level artifacts that the agent reads during execution can induce it to construct a poisoned RAG store where a small set of malicious procedure templates is persisted alongside benign experiences. When the agent later encounters semantically similar tasks, union retrieval over lexical and embedding similarity reliably surfaces these grafted memories, and the agent adopts the embedded unsafe patterns, leading to persistent behavioral drift across sessions. We validate MemoryGraft on MetaGPT's DataInterpreter agent with GPT-4o and find that a small number of poisoned records can account for a large fraction of retrieved experiences on benign workloads, turning experience-based self-improvement into a vector for stealthy and durable compromise. To facilitate reproducibility and future research, our code and evaluation data are available atthis https URL.

View on arXiv
Comments on this paper