ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.13919
16
0

Adaptive digital twins for predictive decision-making: Online Bayesian learning of transition dynamics

15 December 2025
Eugenio Varetti
Matteo Torzoni
Marco Tezzele
Andrea Manzoni
    OffRLAI4CE
ArXiv (abs)PDFHTML
Main:20 Pages
12 Figures
Bibliography:6 Pages
Appendix:2 Pages
Abstract

This work shows how adaptivity can enhance value realization of digital twins in civil engineering. We focus on adapting the state transition models within digital twins represented through probabilistic graphical models. The bi-directional interaction between the physical and virtual domains is modeled using dynamic Bayesian networks. By treating state transition probabilities as random variables endowed with conjugate priors, we enable hierarchical online learning of transition dynamics from a state to another through effortless Bayesian updates. We provide the mathematical framework to account for a larger class of distributions with respect to the current literature. To compute dynamic policies with precision updates we solve parametric Markov decision processes through reinforcement learning. The proposed adaptive digital twin framework enjoys enhanced personalization, increased robustness, and improved cost-effectiveness. We assess our approach on a case study involving structural health monitoring and maintenance planning of a railway bridge.

View on arXiv
Comments on this paper