ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.12673
4
0

Progressive Conditioned Scale-Shift Recalibration of Self-Attention for Online Test-time Adaptation

14 December 2025
Yushun Tang
Ziqiong Liu
Jiyuan Jia
Yi Zhang
Zhihai He
    CLL
ArXiv (abs)PDFHTML
Main:6 Pages
4 Figures
Bibliography:3 Pages
Appendix:2 Pages
Abstract

Online test-time adaptation aims to dynamically adjust a network model in real-time based on sequential input samples during the inference stage. In this work, we find that, when applying a transformer network model to a new target domain, the Query, Key, and Value features of its self-attention module often change significantly from those in the source domain, leading to substantial performance degradation of the transformer model. To address this important issue, we propose to develop a new approach to progressively recalibrate the self-attention at each layer using a local linear transform parameterized by conditioned scale and shift factors. We consider the online model adaptation from the source domain to the target domain as a progressive domain shift separation process. At each transformer network layer, we learn a Domain Separation Network to extract the domain shift feature, which is used to predict the scale and shift parameters for self-attention recalibration using a Factor Generator Network. These two lightweight networks are adapted online during inference. Experimental results on benchmark datasets demonstrate that the proposed progressive conditioned scale-shift recalibration (PCSR) method is able to significantly improve the online test-time domain adaptation performance by a large margin of up to 3.9\% in classification accuracy on the ImageNet-C dataset.

View on arXiv
Comments on this paper