ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.12165
92
0
v1v2 (latest)

Audio-Visual Camera Pose Estimation with Passive Scene Sounds and In-the-Wild Video

13 December 2025
Daniel Adebi
Sagnik Majumder
Kristen Grauman
    VGen
ArXiv (abs)PDFHTML
Main:8 Pages
4 Figures
Bibliography:3 Pages
7 Tables
Appendix:2 Pages
Abstract

Understanding camera motion is a fundamental problem in embodied perception and 3D scene understanding. While visual methods have advanced rapidly, they often struggle under visually degraded conditions such as motion blur or occlusions. In this work, we show that passive scene sounds provide complementary cues for relative camera pose estimation for in-the-wild videos. We introduce a simple but effective audio-visual framework that integrates direction-ofarrival (DOA) spectra and binauralized embeddings into a state-of-the-art vision-only pose estimation model. Our results on two large datasets show consistent gains over strong visual baselines, plus robustness when the visual information is corrupted. To our knowledge, this represents the first work to successfully leverage audio for relative camera pose estimation in real-world videos, and it establishes incidental, everyday audio as an unexpected but promising signal for a classic spatial challenge. Project:this http URL.

View on arXiv
Comments on this paper