ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.11800
28
0

Moment-Based 3D Gaussian Splatting: Resolving Volumetric Occlusion with Order-Independent Transmittance

12 December 2025
Jan U. Müller
Robin Tim Landsgesell
Leif Van Holland
Patrick Stotko
Reinhard Klein
    3DGS
ArXiv (abs)PDFHTML
Main:8 Pages
9 Figures
Bibliography:2 Pages
3 Tables
Appendix:12 Pages
Abstract

The recent success of 3D Gaussian Splatting (3DGS) has reshaped novel view synthesis by enabling fast optimization and real-time rendering of high-quality radiance fields. However, it relies on simplified, order-dependent alpha blending and coarse approximations of the density integral within the rasterizer, thereby limiting its ability to render complex, overlapping semi-transparent objects. In this paper, we extend rasterization-based rendering of 3D Gaussian representations with a novel method for high-fidelity transmittance computation, entirely avoiding the need for ray tracing or per-pixel sample sorting. Building on prior work in moment-based order-independent transparency, our key idea is to characterize the density distribution along each camera ray with a compact and continuous representation based on statistical moments. To this end, we analytically derive and compute a set of per-pixel moments from all contributing 3D Gaussians. From these moments, a continuous transmittance function is reconstructed for each ray, which is then independently sampled within each Gaussian. As a result, our method bridges the gap between rasterization and physical accuracy by modeling light attenuation in complex translucent media, significantly improving overall reconstruction and rendering quality.

View on arXiv
Comments on this paper