68
v1v2 (latest)

Phythesis: Physics-Guided Evolutionary Scene Synthesis for Energy-Efficient Data Center Design via LLMs

Minghao LI
Ruihang Wang
Rui Tan
Yonggang Wen
Main:12 Pages
11 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Abstract

Data center (DC) infrastructure serves as the backbone to support the escalating demand for computing capacity. Traditional design methodologies that blend human expertise with specialized simulation tools scale poorly with the increasing system complexity. Recent studies adopt generative artificial intelligence to design plausible human-centric indoor layouts. However, they do not consider the underlying physics, making them unsuitable for the DC design that sets quantifiable operational objectives and strict physical constraints. To bridge the gap, we propose Phythesis, a novel framework that synergizes large language models (LLMs) and physics-guided evolutionary optimization to automate simulation-ready (SimReady) scene synthesis for energy-efficient DC design. Phythesis employs an iterative bi-level optimization architecture, where (i) the LLM-driven optimization level generates physically plausible three-dimensional layouts and self-criticizes them to refine the scene topology, and (ii) the physics-informed optimization level identifies the optimal asset parameters and selects the best asset combination. Experiments on three generation scales show that Phythesis achieves 57.3% generation success rate increase and 11.5% power usage effectiveness (PUE) improvement, compared with the vanilla LLM-based solution.

View on arXiv
Comments on this paper