ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.10414
72
0

Boosting RL-Based Visual Reasoning with Selective Adversarial Entropy Intervention

11 December 2025
Yang Yu
Zhuangzhuang Chen
Siqi Wang
Lanqing Li
Xiaomeng Li
    AAML
ArXiv (abs)PDFHTML
Main:8 Pages
8 Figures
Bibliography:3 Pages
4 Tables
Abstract

Recently, reinforcement learning (RL) has become a common choice in enhancing the reasoning capabilities of vision-language models (VLMs). Considering existing RL- based finetuning methods, entropy intervention turns out to be an effective way to benefit exploratory ability, thereby improving policy performance. Notably, most existing stud- ies intervene in entropy by simply controlling the update of specific tokens during policy optimization of RL. They ig- nore the entropy intervention during the RL sampling that can boost the performance of GRPO by improving the di- versity of responses. In this paper, we propose Selective- adversarial Entropy Intervention, namely SaEI, which en- hances policy entropy by distorting the visual input with the token-selective adversarial objective coming from the en- tropy of sampled responses. Specifically, we first propose entropy-guided adversarial sampling (EgAS) that formu- lates the entropy of sampled responses as an adversarial ob- jective. Then, the corresponding adversarial gradient can be used to attack the visual input for producing adversarial samples, allowing the policy model to explore a larger an- swer space during RL sampling. Then, we propose token- selective entropy computation (TsEC) to maximize the ef- fectiveness of adversarial attack in EgAS without distorting factual knowledge within VLMs. Extensive experiments on both in-domain and out-of-domain datasets show that our proposed method can greatly improve policy exploration via entropy intervention, to boost reasoning capabilities. Code will be released once the paper is accepted.

View on arXiv
Comments on this paper