ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.07265
32
0

TeluguST-46: A Benchmark Corpus and Comprehensive Evaluation for Telugu-English Speech Translation

8 December 2025
Bhavana Akkiraju
Srihari Bandarupalli
Swathi Sambangi
Vasavi Ravuri
R Vijaya Saraswathi
Anil Kumar Vuppala
    ELM
ArXiv (abs)PDFHTML
Main:6 Pages
Bibliography:2 Pages
3 Tables
Abstract

Despite Telugu being spoken by over 80 million people, speech translation research for this morphologically rich language remains severely underexplored. We address this gap by developing a high-quality Telugu--English speech translation benchmark from 46 hours of manually verified CSTD corpus data (30h/8h/8h train/dev/test split). Our systematic comparison of cascaded versus end-to-end architectures shows that while IndicWhisper + IndicMT achieves the highest performance due to extensive Telugu-specific training data, finetuned SeamlessM4T models demonstrate remarkable competitiveness despite using significantly less Telugu-specific training data. This finding suggests that with careful hyperparameter tuning and sufficient parallel data (potentially less than 100 hours), end-to-end systems can achieve performance comparable to cascaded approaches in low-resource settings. Our metric reliability study evaluating BLEU, METEOR, ChrF++, ROUGE-L, TER, and BERTScore against human judgments reveals that traditional metrics provide better quality discrimination than BERTScore for Telugu--English translation. The work delivers three key contributions: a reproducible Telugu--English benchmark, empirical evidence of competitive end-to-end performance potential in low-resource scenarios, and practical guidance for automatic evaluation in morphologically complex language pairs.

View on arXiv
Comments on this paper