All Papers
Title |
|---|
Title |
|---|

As Large Language Models (LLMs) continue to scale in parameter count, deploying them on commodity hardware has become increasingly challenging. Post-Training Quantization (PTQ) addresses this by reducing the precision of model weights, typically to 4-bit or lower. However, uniform quantization often leads to significant performance degradation due to the presence of ``outlier features'' -- weights that, while few in number, are critical for maintaining model accuracy. Current state-of-the-art methods such as AWQ (Activation-aware Weight Quantization) and SpQR (Sparse Quantization Representations) rely on calibration data to identify these salient weights via activation magnitudes or Hessian sensitivity. In scenarios where data privacy is paramount or calibration data is unavailable, these methods are inapplicable.
View on arXiv