ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.21245
316
0
v1v2 (latest)

FIELDS: Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision

26 November 2025
Chen Ling
Henglin Shi
Hedvig Kjellström
    CVBM3DH
ArXiv (abs)PDFHTML
Main:8 Pages
16 Figures
Bibliography:3 Pages
8 Tables
Appendix:8 Pages
Abstract

Facial expressions convey the bulk of emotional information in human communication, yet existing 3D face reconstruction methods often miss subtle affective details due to reliance on 2D supervision and lack of 3D ground truth. We propose FIELDS (Face reconstruction with accurate Inference of Expression using Learning with Direct Supervision) to address these limitations by extending self-supervised 2D image consistency cues with direct 3D expression parameter supervision and an auxiliary emotion recognition branch. Our encoder is guided by authentic expression parameters from spontaneous 4D facial scans, while an intensity-aware emotion loss encourages the 3D expression parameters to capture genuine emotion content without exaggeration. This dual-supervision strategy bridges the 2D/3D domain gap and mitigates expression-intensity bias, yielding high-fidelity 3D reconstructions that preserve subtle emotional cues. From a single image, FIELDS produces emotion-rich face models with highly realistic expressions, significantly improving in-the-wild facial expression recognition performance without sacrificing naturalness.

View on arXiv
Comments on this paper