ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18323
8
0

Crash-Consistent Checkpointing for AI Training on macOS/APFS

23 November 2025
Juha Jeon
ArXiv (abs)PDFHTMLGithub
Main:13 Pages
7 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Abstract

Deep learning training relies on periodic checkpoints to recover from failures, but unsafe checkpoint installation can leave corrupted files on disk. This paper presents an experimental study of checkpoint installation protocols and integrity validation for AI training on macOS/APFS. We implement three write modes with increasing durability guarantees: unsafe (baseline, no fsync), atomic_nodirsync (file-level durability via fsync()), and atomic_dirsync (file + directory durability). We design a format-agnostic integrity guard using SHA-256 checksums with automatic rollback. Through controlled experiments including crash injection (430 unsafe-mode trials) and corruption injection (1,600 atomic-mode trials), we demonstrate that the integrity guard detects 99.8-100% of corruptions with zero false positives. Performance overhead is 56.5-108.4% for atomic_nodirsync and 84.2-570.6% for atomic_dirsync relative to the unsafe baseline. Our findings quantify the reliability-performance trade-offs and provide deployment guidance for production AI infrastructure.

View on arXiv
Comments on this paper