ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.12607
64
0

Open-World Test-Time Adaptation with Hierarchical Feature Aggregation and Attention Affine

16 November 2025
Ziqiong Liu
Yushun Tang
Junyang Ji
Z. He
    TTA
ArXiv (abs)PDFHTMLGithub (428★)
Main:16 Pages
8 Figures
Bibliography:8 Pages
7 Tables
Appendix:7 Pages
Abstract

Test-time adaptation (TTA) refers to adjusting the model during the testing phase to cope with changes in sample distribution and enhance the model's adaptability to new environments. In real-world scenarios, models often encounter samples from unseen (out-of-distribution, OOD) categories. Misclassifying these as known (in-distribution, ID) classes not only degrades predictive accuracy but can also impair the adaptation process, leading to further errors on subsequent ID samples. Many existing TTA methods suffer substantial performance drops under such conditions. To address this challenge, we propose a Hierarchical Ladder Network that extracts OOD features from class tokens aggregated across all Transformer layers. OOD detection performance is enhanced by combining the original model prediction with the output of the Hierarchical Ladder Network (HLN) via weighted probability fusion. To improve robustness under domain shift, we further introduce an Attention Affine Network (AAN) that adaptively refines the self-attention mechanism conditioned on the token information to better adapt to domain drift, thereby improving the classification performance of the model on datasets with domain shift. Additionally, a weighted entropy mechanism is employed to dynamically suppress the influence of low-confidence samples during adaptation. Experimental results on benchmark datasets show that our method significantly improves the performance on the most widely used classification datasets.

View on arXiv
Comments on this paper