ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.04344
41
0

Comparative Study of CNN Architectures for Binary Classification of Horses and Motorcycles in the VOC 2008 Dataset

6 November 2025
Muhammad Annas Shaikh
Hamza Zaman
Arbaz Asif
    MQ
ArXiv (abs)PDFHTML
Main:4 Pages
1 Figures
Bibliography:1 Pages
Abstract

This paper presents a comprehensive evaluation of nine convolutional neural network architectures for binary classification of horses and motorcycles in the VOC 2008 dataset. We address the significant class imbalance problem by implementing minority-class augmentation techniques. Our experiments compare modern architectures including ResNet-50, ConvNeXt-Tiny, DenseNet-121, and Vision Transformer across multiple performance metrics. Results demonstrate substantial performance variations, with ConvNeXt-Tiny achieving the highest Average Precision (AP) of 95.53% for horse detection and 89.12% for motorcycle detection. We observe that data augmentation significantly improves minority class detection, particularly benefiting deeper architectures. This study provides insights into architecture selection for imbalanced binary classification tasks and quantifies the impact of data augmentation strategies in mitigating class imbalance issues in object detection.

View on arXiv
Comments on this paper