ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.00805
271
0

REaR: Retrieve, Expand and Refine for Effective Multitable Retrieval

2 November 2025
Rishita Agarwal
Himanshu Singhal
Peter Baile Chen
Manan Roy Choudhury
Dan Roth
Vivek Gupta
    LMTD
ArXiv (abs)PDFHTML
Main:7 Pages
2 Figures
Bibliography:2 Pages
15 Tables
Appendix:4 Pages
Abstract

Answering natural language queries over relational data often requires retrieving and reasoning over multiple tables, yet most retrievers optimize only for query-table relevance and ignore table table compatibility. We introduce REAR (Retrieve, Expand and Refine), a three-stage, LLM-free framework that separates semantic relevance from structural joinability for efficient, high-fidelity multi-table retrieval. REAR (i) retrieves query-aligned tables, (ii) expands these with structurally joinable tables via fast, precomputed column-embedding comparisons, and (iii) refines them by pruning noisy or weakly related candidates. Empirically, REAR is retriever-agnostic and consistently improves dense/sparse retrievers on complex table QA datasets (BIRD, MMQA, and Spider) by improving both multi-table retrieval quality and downstream SQL execution. Despite being LLM-free, it delivers performance competitive with state-of-the-art LLM-augmented retrieval systems (e.g.,ARM) while achieving much lower latency and cost. Ablations confirm complementary gains from expansion and refinement, underscoring REAR as a practical, scalable building block for table-based downstream tasks (e.g., Text-to-SQL).

View on arXiv
Comments on this paper