12
v1v2 (latest)

Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing

Zhihui Chen
Mengling Feng
Main:9 Pages
4 Figures
Bibliography:2 Pages
2 Tables
Appendix:1 Pages
Abstract

Recent advances in multimodal large language models have enabled remarkable medical image editing capabilities. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built specifically for medical image editing with strict anatomical and clinical constraints. We introduce Med-Banana-50K, a comprehensive 50K-image dataset for instruction-based medical image editing spanning three modalities (chest X-ray, brain MRI, fundus photography) and 23 disease types. Our dataset is constructed by leveraging Gemini-2.5-Flash-Image to generate bidirectional edits (lesion addition and removal) from real medical images. What distinguishes Med-Banana-50K from general-domain editing datasets is our systematic approach to medical quality control: we employ LLM-as-Judge with a medically grounded rubric (instruction compliance, structural plausibility, realism, and fidelity preservation) and history-aware iterative refinement up to five rounds. Beyond single-turn editing, Med-Banana-50K includes 37K failed attempts with full conversation logs for preference learning and alignment research. By providing this large-scale, medically validated, and fully documented resource, Med-Banana-50K establishes a foundation for training and evaluating the next generation of medical image editingthis http URLdataset and code are publicly available at [this https URL].

View on arXiv
Comments on this paper