ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.23449
20
0

Schrodinger Neural Network and Uncertainty Quantification: Quantum Machine

27 October 2025
M. M. Hammad
    UQCV
ArXiv (abs)PDFHTML
Main:29 Pages
19 Figures
Abstract

We introduce the Schrodinger Neural Network (SNN), a principled architecture for conditional density estimation and uncertainty quantification inspired by quantum mechanics. The SNN maps each input to a normalized wave function on the output domain and computes predictive probabilities via the Born rule. The SNN departs from standard parametric likelihood heads by learning complex coefficients of a spectral expansion (e . g ., Chebyshev polynomials) whose squared modulus yields the conditional density p(y∣x)=∣ψx(y)∣2p(y|x)=\left| \psi _x(y)\right| {}^2p(y∣x)=∣ψx​(y)∣2 with analytic normalization. This representation confers three practical advantages: positivity and exact normalization by construction, native multimodality through interference among basis modes without explicit mixture bookkeeping, and yields closed-form (or efficiently computable) functionals−-−such as moments and several calibration diagnostics−-−as quadratic forms in coefficient space. We develop the statistical and computational foundations of the SNN, including (i) training by exact maximum-likelihood with unit-sphere coefficient parameterization, (ii) physics-inspired quadratic regularizers (kinetic and potential energies) motivated by uncertainty relations between localization and spectral complexity, (iii) scalable low-rank and separable extensions for multivariate outputs, (iv) operator-based extensions that represent observables, constraints, and weak labels as self-adjoint matrices acting on the amplitude space, and (v) a comprehensive framework for evaluating multimodal predictions. The SNN provides a coherent, tractable framework to elevate probabilistic prediction from point estimates to physically inspired amplitude-based distributions.

View on arXiv
Comments on this paper