ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.23386
32
0

Full-Dynamics Real-Time Nonlinear Model Predictive Control of Heavy-Duty Hydraulic Manipulator for Trajectory Tracking Tasks

27 October 2025
Alvaro Paz
Mahdi Hejrati
Pauli Mustalahti
Jouni Mattila
    AI4CE
ArXiv (abs)PDFHTML
Main:4 Pages
8 Figures
Bibliography:2 Pages
Appendix:1 Pages
Abstract

Heavy-duty hydraulic manipulators (HHMs) operate under strict physical and safety-critical constraints due to their large size, high power, and complex nonlinear dynamics. Ensuring that both joint-level and end-effector trajectories remain compliant with actuator capabilities, such as force, velocity, and position limits, is essential for safe and reliable operation, yet remains largely underexplored in real-time control frameworks. This paper presents a nonlinear model predictive control (NMPC) framework designed to guarantee constraint satisfaction throughout the full nonlinear dynamics of HHMs, while running at a real-time control frequency of 1 kHz. The proposed method combines a multiple-shooting strategy with real-time sensor feedback, and is supported by a robust low-level controller based on virtual decomposition control (VDC) for precise joint tracking. Experimental validation on a full-scale hydraulic manipulator shows that the NMPC framework not only enforces actuator constraints at the joint level, but also ensures constraint-compliant motion in Cartesian space for the end-effector. These results demonstrate the method's capability to deliver high-accuracy trajectory tracking while strictly respecting safety-critical limits, setting a new benchmark for real-time control in large-scale hydraulic systems.

View on arXiv
Comments on this paper