Hierarchical Graph Networks for Accurate Weather Forecasting via Lightweight Training
- AI4CE

Climate events arise from intricate, multivariate dynamics governed by global-scale drivers, profoundly impacting food, energy, and infrastructure. Yet, accurate weather prediction remains elusive due to physical processes unfolding across diverse spatio-temporal scales, which fixed-resolution methods cannot capture. Hierarchical Graph Neural Networks (HGNNs) offer a multiscale representation, but nonlinear downward mappings often erase global trends, weakening the integration of physics into forecasts. We introduce HiFlowCast and its ensemble variant HiAntFlow, HGNNs that embed physics within a multiscale prediction framework. Two innovations underpin their design: a Latent-Memory-Retention mechanism that preserves global trends during downward traversal, and a Latent-to-Physics branch that integrates PDE solution fields across diverse scales. Our Flow models cut errors by over 5% at 13-day lead times and by 5-8% under 1st and 99th quantile extremes, improving reliability for rare events. Leveraging pretrained model weights, they converge within a single epoch, reducing training cost and their carbon footprint. Such efficiency is vital as the growing scale of machine learning challenges sustainability and limits research accessibility. Code and model weights are in the supplementary materials.
View on arXiv