All Papers
Title |
|---|
Title |
|---|

This article compares the performance of six prominent object detection algorithms, YOLOv11, RetinaNet, Fast R-CNN, YOLOv8, RT-DETR, and DETR, on the NEU-DET surface defect detection dataset, comprising images representing various metal surface defects, a crucial application in industrial quality control. Each model's performance was assessed regarding detection accuracy, speed, and robustness across different defect types such as scratches, inclusions, and rolled-in scales. YOLOv11, a state-of-the-art real-time object detection algorithm, demonstrated superior performance compared to the other methods, achieving a remarkable 70% higher accuracy on average. This improvement can be attributed to YOLOv11s enhanced feature extraction capabilities and ability to process the entire image in a single forward pass, making it faster and more efficient in detecting minor surface defects. Additionally, YOLOv11's architecture optimizations, such as improved anchor box generation and deeper convolutional layers, contributed to more precise localization of defects. In conclusion, YOLOv11's outstanding performance in accuracy and speed solidifies its position as the most effective model for surface defect detection on the NEU dataset, surpassing competing algorithms by a substantial margin.
View on arXiv