ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.21333
84
0

CausalRec: A CausalBoost Attention Model for Sequential Recommendation

24 October 2025
Yunbo Hou
Tianle Yang
Ruijie Li
Li He
Liang Wang
Weiping Li
Bo Zheng
Guojie Song
    CMLHAI
ArXiv (abs)PDFHTML
Main:9 Pages
3 Figures
Bibliography:2 Pages
7 Tables
Abstract

Recent advances in correlation-based sequential recommendation systems have demonstrated substantial success. Specifically, the attention-based model outperforms other RNN-based and Markov chains-based models by capturing both short- and long-term dependencies more effectively. However, solely focusing on item co-occurrences overlooks the underlying motivations behind user behaviors, leading to spurious correlations and potentially inaccurate recommendations. To address this limitation, we present a novel framework that integrates causal attention for sequential recommendation, CausalRec. It incorporates a causal discovery block and a CausalBooster. The causal discovery block learns the causal graph in user behavior sequences, and we provide a theory to guarantee the identifiability of the learned causal graph. The CausalBooster utilizes the discovered causal graph to refine the attention mechanism, prioritizing behaviors with causal significance. Experimental evaluations on real-world datasets indicate that CausalRec outperforms several state-of-the-art methods, with average improvements of 7.21% in Hit Rate (HR) and 8.65% in Normalized Discounted Cumulative Gain (NDCG). To the best of our knowledge, this is the first model to incorporate causality through the attention mechanism in sequential recommendation, demonstrating the value of causality in generating more accurate and reliable recommendations.

View on arXiv
Comments on this paper