Gen-Review: A Large-scale Dataset of AI-Generated (and Human-written) Peer Reviews
- ALM

How does the progressive embracement of Large Language Models (LLMs) affect scientific peer reviewing? This multifaceted question is fundamental to the effectiveness -- as well as to the integrity -- of the scientific process. Recent evidence suggests that LLMs may have already been tacitly used in peer reviewing, e.g., at the 2024 International Conference of Learning Representations (ICLR). Furthermore, some efforts have been undertaken in an attempt to explicitly integrate LLMs in peer reviewing by various editorial boards (including that of ICLR'25). To fully understand the utility and the implications of LLMs' deployment for scientific reviewing, a comprehensive relevant dataset is strongly desirable. Despite some previous research on this topic, such dataset has been lacking so far. We fill in this gap by presenting GenReview, the hitherto largest dataset containing LLM-written reviews. Our dataset includes 81K reviews generated for all submissions to the 2018--2025 editions of the ICLR by providing the LLM with three independent prompts: a negative, a positive, and a neutral one. GenReview is also linked to the respective papers and their original reviews, thereby enabling a broad range of investigations. To illustrate the value of GenReview, we explore a sample of intriguing research questions, namely: if LLMs exhibit bias in reviewing (they do); if LLM-written reviews can be automatically detected (so far, they can); if LLMs can rigorously follow reviewing instructions (not always) and whether LLM-provided ratings align with decisions on paper acceptance or rejection (holds true only for accepted papers). GenReview can be accessed at the following link:this https URL.
View on arXiv