ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.21144
76
0

NeuroGenPoisoning: Neuron-Guided Attacks on Retrieval-Augmented Generation of LLM via Genetic Optimization of External Knowledge

24 October 2025
Hanyu Zhu
Lance Fiondella
Jiawei Yuan
K. Zeng
Long Jiao
    SILMAAMLKELM
ArXiv (abs)PDFHTML
Main:10 Pages
8 Figures
Bibliography:5 Pages
5 Tables
Appendix:4 Pages
Abstract

Retrieval-Augmented Generation (RAG) empowers Large Language Models (LLMs) to dynamically integrate external knowledge during inference, improving their factual accuracy and adaptability. However, adversaries can inject poisoned external knowledge to override the model's internal memory. While existing attacks iteratively manipulate retrieval content or prompt structure of RAG, they largely ignore the model's internal representation dynamics and neuron-level sensitivities. The underlying mechanism of RAG poisoning has not been fully studied and the effect of knowledge conflict with strong parametric knowledge in RAG is not considered. In this work, we propose NeuroGenPoisoning, a novel attack framework that generates adversarial external knowledge in RAG guided by LLM internal neuron attribution and genetic optimization. Our method first identifies a set of Poison-Responsive Neurons whose activation strongly correlates with contextual poisoning knowledge. We then employ a genetic algorithm to evolve adversarial passages that maximally activate these neurons. Crucially, our framework enables massive-scale generation of effective poisoned RAG knowledge by identifying and reusing promising but initially unsuccessful external knowledge variants via observed attribution signals. At the same time, Poison-Responsive Neurons guided poisoning can effectively resolves knowledge conflict. Experimental results across models and datasets demonstrate consistently achieving high Population Overwrite Success Rate (POSR) of over 90% while preserving fluency. Empirical evidence shows that our method effectively resolves knowledge conflict.

View on arXiv
Comments on this paper