
While recent semantic segmentation networks heavily rely on powerful pretrained encoders, most employ simplistic decoders, leading to suboptimal trade-offs between semantic context and fine-grained detail preservation. To address this, we propose a novel decoder architecture, WaveSeg, which jointly optimizes feature refinement in spatial and wavelet domains. Specifically, high-frequency components are first learned from input images as explicit priors to reinforce boundary details at early stages. A multi-scale fusion mechanism, Dual Domain Operation (DDO), is then applied, and the novel Spectrum Decomposition Attention (SDA) block is proposed, which is developed to leverage Mamba's linear-complexity long-range modeling to enhance high-frequency structural details. Meanwhile, reparameterized convolutions are applied to preserve low-frequency semantic integrity in the wavelet domain. Finally, a residual-guided fusion integrates multi-scale features with boundary-aware representations at native resolution, producing semantically and structurally rich feature maps. Extensive experiments on standard benchmarks demonstrate that WaveSeg, leveraging wavelet-domain frequency prior with Mamba-based attention, consistently outperforms state-of-the-art approaches both quantitatively and qualitatively, achieving efficient and precise segmentation.
View on arXiv