60

Graph Neural Regularizers for PDE Inverse Problems

Main:4 Pages
3 Figures
Bibliography:3 Pages
2 Tables
Appendix:3 Pages
Abstract

We present a framework for solving a broad class of ill-posed inverse problems governed by partial differential equations (PDEs), where the target coefficients of the forward operator are recovered through an iterative regularization scheme that alternates between FEM-based inversion and learned graph neural regularization. The forward problem is numerically solved using the finite element method (FEM), enabling applicability to a wide range of geometries and PDEs. By leveraging the graph structure inherent to FEM discretizations, we employ physics-inspired graph neural networks as learned regularizers, providing a robust, interpretable, and generalizable alternative to standard approaches. Numerical experiments demonstrate that our framework outperforms classical regularization techniques and achieves accurate reconstructions even in highly ill-posed scenarios.

View on arXiv
Comments on this paper