ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.20850
52
0

Can large audio language models understand child stuttering speech? speech summarization, and source separation

21 October 2025
Chibuzor Okocha
Maya Bakri
Christan Grant
    AuLLM
ArXiv (abs)PDFHTML
Main:5 Pages
1 Figures
Bibliography:2 Pages
11 Tables
Abstract

Child speech differs from adult speech in acoustics, prosody, and language development, and disfluencies (repetitions, prolongations, blocks) further challenge Automatic Speech Recognition (ASR) and downstream Natural Language Processing (NLP). Recent large audio-language models (LALMs) demonstrate strong cross-modal audio understanding; however, their behavior in disfluent child speech remains underexplored. We evaluate several state-of-the-art LALMs in two settings: an interview (mixed speakers) and a reading task (single child). The tasks are (i) single-channel source separation to isolate the child and (ii) child-only summarization that preserves clinically relevant disfluencies and avoids adult-speech leakage.Evaluation combines Large Language Model (LLM) as a judge, human expert ratings, and BERTScore (F1), and we report agreement between models and between models and humans to assess reliability. Our findings delineate the conditions under which LALMs produce faithful child-only summaries from mixed audio and where they fail, offering practical guidance for clinical and educational deployments. We provide prompts and evaluation scripts to support replication.

View on arXiv
Comments on this paper