ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.20556
76
0

Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics

23 October 2025
Alexandre Benoit
Catherine Aitken
Yu He
ArXiv (abs)PDFHTML
Main:10 Pages
6 Figures
Bibliography:3 Pages
15 Tables
Appendix:8 Pages
Abstract

Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.

View on arXiv
Comments on this paper