ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.20339
53
0

Multi-Task Deep Learning for Surface Metrology

23 October 2025
D. Kucharski
A. Gaska
T. Kowaluk
K. Stepien
M. Repalska
B. Gapinski
M. Wieczorowski
M. Nawotka
P. Sobecki
P. Sosinowski
J. Tomasik
A. Wojtowicz
    UQCV
ArXiv (abs)PDFHTML
Main:32 Pages
284 Figures
Bibliography:1 Pages
10 Tables
Appendix:54 Pages
Abstract

A reproducible deep learning framework is presented for surface metrology to predict surface texture parameters together with their reported standard uncertainties. Using a multi-instrument dataset spanning tactile and optical systems, measurement system type classification is addressed alongside coordinated regression of Ra, Rz, RONt and their uncertainty targets (Ra_uncert, Rz_uncert, RONt_uncert). Uncertainty is modelled via quantile and heteroscedastic heads with post-hoc conformal calibration to yield calibrated intervals. On a held-out set, high fidelity was achieved by single-target regressors (R2: Ra 0.9824, Rz 0.9847, RONt 0.9918), with two uncertainty targets also well modelled (Ra_uncert 0.9899, Rz_uncert 0.9955); RONt_uncert remained difficult (R2 0.4934). The classifier reached 92.85% accuracy and probability calibration was essentially unchanged after temperature scaling (ECE 0.00504 -> 0.00503 on the test split). Negative transfer was observed for naive multi-output trunks, with single-target models performing better. These results provide calibrated predictions suitable to inform instrument selection and acceptance decisions in metrological workflows.

View on arXiv
Comments on this paper