
We investigate how agents built on pretrained large language models can learn target classification functions from labeled examples without parameter updates. While conventional approaches like fine-tuning are often costly, inflexible, and opaque, we propose a memory-augmented framework that leverages both labeled data and LLM-generated critiques. Our framework uses episodic memory to store instance-level critiques-capturing specific past experiences-and semantic memory to distill these into reusable, task-level guidance. Across a diverse set of tasks, incorporating critiques yields up to a 24.8 percent accuracy improvement over retrieval-based (RAG-style) baselines that rely only on labels. Through extensive empirical evaluation, we uncover distinct behavioral differences between OpenAI and opensource models, particularly in how they handle fact-oriented versus preference-based data. To interpret how models respond to different representations of supervision encoded in memory, we introduce a novel metric, suggestibility. This helps explain observed behaviors and illuminates how model characteristics and memory strategies jointly shape learning dynamics. Our findings highlight the promise of memory-driven, reflective learning for building more adaptive and interpretable LLM agents.
View on arXiv