ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.18539
12
0

GBlobs: Local LiDAR Geometry for Improved Sensor Placement Generalization

21 October 2025
Dušan Malić
Christian Fruhwirth-Reisinger
Alexander Prutsch
Wei Lin
Samuel Schulter
Horst Possegger
    3DPC
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
3 Figures
Bibliography:1 Pages
1 Tables
Abstract

This technical report outlines the top-ranking solution for RoboSense 2025: Track 3, achieving state-of-the-art performance on 3D object detection under various sensor placements. Our submission utilizes GBlobs, a local point cloud feature descriptor specifically designed to enhance model generalization across diverse LiDAR configurations. Current LiDAR-based 3D detectors often suffer from a \enquote{geometric shortcut} when trained on conventional global features (\ie, absolute Cartesian coordinates). This introduces a position bias that causes models to primarily rely on absolute object position rather than distinguishing shape and appearance characteristics. Although effective for in-domain data, this shortcut severely limits generalization when encountering different point distributions, such as those resulting from varying sensor placements. By using GBlobs as network input features, we effectively circumvent this geometric shortcut, compelling the network to learn robust, object-centric representations. This approach significantly enhances the model's ability to generalize, resulting in the exceptional performance demonstrated in this challenge.

View on arXiv
Comments on this paper