ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.17072
64
0

DFNN: A Deep Fréchet Neural Network Framework for Learning Metric-Space-Valued Responses

20 October 2025
Kyum Kim
Yaqing Chen
Paromita Dubey
ArXiv (abs)PDFHTML
Main:16 Pages
4 Figures
Bibliography:9 Pages
12 Tables
Appendix:2 Pages
Abstract

Regression with non-Euclidean responses -- e.g., probability distributions, networks, symmetric positive-definite matrices, and compositions -- has become increasingly important in modern applications. In this paper, we propose deep Fréchet neural networks (DFNNs), an end-to-end deep learning framework for predicting non-Euclidean responses -- which are considered as random objects in a metric space -- from Euclidean predictors. Our method leverages the representation-learning power of deep neural networks (DNNs) to the task of approximating conditional Fréchet means of the response given the predictors, the metric-space analogue of conditional expectations, by minimizing a Fréchet risk. The framework is highly flexible, accommodating diverse metrics and high-dimensional predictors. We establish a universal approximation theorem for DFNNs, advancing the state-of-the-art of neural network approximation theory to general metric-space-valued responses without making model assumptions or relying on local smoothing. Empirical studies on synthetic distributional and network-valued responses, as well as a real-world application to predicting employment occupational compositions, demonstrate that DFNNs consistently outperform existing methods.

View on arXiv
Comments on this paper