38

Evaluating protein binding interfaces with PUMBA

Main:8 Pages
2 Figures
Bibliography:2 Pages
3 Tables
Abstract

Protein-protein docking tools help in studying interactions between proteins, and are essential for drug, vaccine, and therapeutic development. However, the accuracy of a docking tool depends on a robust scoring function that can reliably differentiate between native and non-native complexes. PIsToN is a state-of-the-art deep learning-based scoring function that uses Vision Transformers in its architecture. Recently, the Mamba architecture has demonstrated exceptional performance in both natural language processing and computer vision, often outperforming Transformer-based models in their domains. In this study, we introduce PUMBA (Protein-protein interface evaluation with Vision Mamba), which improves PIsToN by replacing its Vision Transformer backbone with Vision Mamba. This change allows us to leverage Mamba's efficient long-range sequence modeling for sequences of image patches. As a result, the model's ability to capture both global and local patterns in protein-protein interface features is significantly improved. Evaluation on several widely-used, large-scale public datasets demonstrates that PUMBA consistently outperforms its original Transformer-based predecessor, PIsToN.

View on arXiv
Comments on this paper