ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.16567
50
0

Hallucination Benchmark for Speech Foundation Models

18 October 2025
Alkis Koudounas
Moreno La Quatra
Manuel Giollo
Sabato Marco Siniscalchi
Elena Baralis
    HILM
ArXiv (abs)PDFHTMLGithub (810★)
Main:9 Pages
7 Figures
Bibliography:8 Pages
8 Tables
Appendix:11 Pages
Abstract

Hallucinations in automatic speech recognition (ASR) systems refer to fluent and coherent transcriptions produced by neural ASR models that are completely unrelated to the underlying acoustic input (i.e., the speech signal). While similar to conventional decoding errors in potentially compromising the usability of transcriptions for downstream applications, hallucinations can be more detrimental due to their preservation of syntactically and semantically plausible structure. This apparent coherence can mislead subsequent processing stages and introduce serious risks, particularly in critical domains such as healthcare and law. Conventional evaluation metrics are primarily centered on error-based metrics and fail to distinguish between phonetic inaccuracies and hallucinations. Consequently, there is a critical need for new evaluation frameworks that can effectively identify and assess models with a heightened propensity for generating hallucinated content. To this end, we introduce SHALLOW, the first benchmark framework that systematically categorizes and quantifies hallucination phenomena in ASR along four complementary axes: lexical, phonetic, morphological, and semantic. We define targeted metrics within each category to produce interpretable profiles of model behavior. Through evaluation across various architectures and speech domains, we have found that SHALLOW metrics correlate strongly with word error rate (WER) when recognition quality is high (i.e., low WER). Still, this correlation weakens substantially as WER increases. SHALLOW, therefore, captures fine-grained error patterns that WER fails to distinguish under degraded and challenging conditions. Our framework supports specific diagnosis of model weaknesses and provides feedback for model improvement beyond what aggregate error rates can offer.

View on arXiv
Comments on this paper