ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.14937
28
0

AI-Powered Early Diagnosis of Mental Health Disorders from Real-World Clinical Conversations

16 October 2025
Jianfeng Zhu
Julina Maharjan
Xinyu Li
Karin G. Coifman
Ruoming Jin
    AI4MH
ArXiv (abs)PDFHTML
Main:7 Pages
1 Figures
Bibliography:3 Pages
6 Tables
Abstract

Mental health disorders remain among the leading cause of disability worldwide, yet conditions such as depression, anxiety, and Post-Traumatic Stress Disorder (PTSD) are frequently underdiagnosed or misdiagnosed due to subjective assessments, limited clinical resources, and stigma and low awareness. In primary care settings, studies show that providers misidentify depression or anxiety in over 60% of cases, highlighting the urgent need for scalable, accessible, and context-aware diagnostic tools that can support early detection and intervention. In this study, we evaluate the effectiveness of machine learning models for mental health screening using a unique dataset of 553 real-world, semistructured interviews, each paried with ground-truth diagnoses for major depressive episodes (MDE), anxiety disorders, and PTSD. We benchmark multiple model classes, including zero-shot prompting with GPT-4.1 Mini and MetaLLaMA, as well as fine-tuned RoBERTa models using LowRank Adaptation (LoRA). Our models achieve over 80% accuracy across diagnostic categories, with especially strongperformance on PTSD (up to 89% accuracy and 98% recall). We also find that using shorter context, focused context segments improves recall, suggesting that focused narrative cues enhance detection sensitivity. LoRA fine-tuning proves both efficient and effective, with lower-rank configurations (e.g., rank 8 and 16) maintaining competitive performance across evaluation metrics. Our results demonstrate that LLM-based models can offer substantial improvements over traditional self-report screening tools, providing a path toward low-barrier, AI-powerd early diagnosis. This work lays the groundwork for integrating machine learning into real-world clinical workflows, particularly in low-resource or high-stigma environments where access to timely mental health care is most limited.

View on arXiv
Comments on this paper