All Papers
Title |
|---|
Title |
|---|

Incomplete multi-view data, where certain views are entirely missing for some samples, poses significant challenges for traditional multi-view clustering methods. Existing deep incomplete multi-view clustering approaches often rely on static fusion strategies or two-stage pipelines, leading to suboptimal fusion results and error propagation issues. To address these limitations, this paper proposes a novel incomplete multi-view clustering framework based on Hierarchical Semantic Alignment and Cooperative Completion (HSACC). HSACC achieves robust cross-view fusion through a dual-level semantic space design. In the low-level semantic space, consistency alignment is ensured by maximizing mutual information across views. In the high-level semantic space, adaptive view weights are dynamically assigned based on the distributional affinity between individual views and an initial fused representation, followed by weighted fusion to generate a unified global representation. Additionally, HSACC implicitly recovers missing views by projecting aligned latent representations into high-dimensional semantic spaces and jointly optimizes reconstruction and clustering objectives, enabling cooperative learning of completion and clustering. Experimental results demonstrate that HSACC significantly outperforms state-of-the-art methods on five benchmark datasets. Ablation studies validate the effectiveness of the hierarchical alignment and dynamic weighting mechanisms, while parameter analysis confirms the model's robustness to hyperparameter variations.
View on arXiv