All Papers
Title |
|---|
Title |
|---|

Video comprises the vast majority of bits that are generated daily, and is the primary signal driving current innovations in robotics, remote sensing, and wearable technology. Yet, the most powerful video understanding models are too expensive for the resource-constrained platforms used in these applications. One approach is to offload inference to the cloud; this gives access to GPUs capable of processing high-resolution videos in real time. But even with reliable, high-bandwidth communication channels, the combined latency of video encoding, model inference, and round-trip communication prohibits use for certain real-time applications. The alternative is to use fully local inference; but this places extreme constraints on computational and power costs, requiring smaller models and lower resolution, leading to degraded accuracy. To address these challenges, we propose Dedelayed, a real-time inference system that divides computation between a remote model operating on delayed video frames and a local model with access to the current frame. The remote model is trained to make predictions on anticipated future frames, which the local model incorporates into its prediction for the current frame. The local and remote models are jointly optimized with an autoencoder that limits the transmission bitrate required by the available downlink communication channel. We evaluate Dedelayed on the task of real-time streaming video segmentation using the BDD100k driving dataset. For a round trip delay of 100 ms, Dedelayed improves performance by 6.4 mIoU compared to fully local inference and 9.8 mIoU compared to remote inference -- an equivalent improvement to using a model ten times larger.
View on arXiv