52

Ultra High-Resolution Image Inpainting with Patch-Based Content Consistency Adapter

Main:8 Pages
7 Figures
Bibliography:2 Pages
3 Tables
Abstract

In this work, we present Patch-Adapter, an effective framework for high-resolution text-guided image inpainting. Unlike existing methods limited to lower resolutions, our approach achieves 4K+ resolution while maintaining precise content consistency and prompt alignment, two critical challenges in image inpainting that intensify with increasing resolution and texture complexity. Patch-Adapter leverages a two-stage adapter architecture to scale the diffusion model's resolution from 1K to 4K+ without requiring structural overhauls: (1) Dual Context Adapter learns coherence between masked and unmasked regions at reduced resolutions to establish global structural consistency; and (2) Reference Patch Adapter implements a patch-level attention mechanism for full-resolution inpainting, preserving local detail fidelity through adaptive feature fusion. This dual-stage architecture uniquely addresses the scalability gap in high-resolution inpainting by decoupling global semantics from localized refinement. Experiments demonstrate that Patch-Adapter not only resolves artifacts common in large-scale inpainting but also achieves state-of-the-art performance on the OpenImages and Photo-Concept-Bucket datasets, outperforming existing methods in both perceptual quality and text-prompt adherence.

View on arXiv
Comments on this paper