ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12111
68
0

Chimera: State Space Models Beyond Sequences

14 October 2025
Aakash Lahoti
Tanya Marwah
Ratish Puduppully
Albert Gu
    MambaGNNAI4CE
ArXiv (abs)PDFHTMLGithub (1★)
Main:11 Pages
6 Figures
Bibliography:4 Pages
12 Tables
Appendix:7 Pages
Abstract

Transformer-based deep learning methods have become the standard approach for modeling diverse data such as sequences, images, and graphs. These methods rely on self-attention, which treats data as an unordered set of elements. This ignores the neighborhood structure or graph topology of the data and requires inductive biases--such as position embeddings in sequences and images, or random walks in graphs--to incorporate topology. However, designing such task-specific biases requires significant effort and can introduce side effects that hinder generalization. We introduce Chimera, a unified model that directly incorporates data topology in a principled way, removing the need for domain-specific biases. The key idea is that state space models--which naturally do not require position embeddings--can be generalized to capture any graph topology. Our experiments show that Chimera achieves strong performance across language, vision, and graph domains, outperforming BERT on GLUE by 0.7 points, ViT on ImageNet-1k by 2.6%, and all baselines on the Long Range Graph Benchmark. We further propose algorithmic optimizations to improve Chimera's efficiency: (1) for Directed Acyclic Graphs, Chimera can be implemented as a linear-time recurrence; (2) for general graphs, a simple mathematical relaxation achieves Transformer's quadratic complexity without domain-specific heuristics. These results validate Chimera's core contribution and support the idea that data topology is a powerful inductive bias across modalities.

View on arXiv
Comments on this paper