ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12095
33
0

IL3D: A Large-Scale Indoor Layout Dataset for LLM-Driven 3D Scene Generation

14 October 2025
Wenxu Zhou
Kaixuan Nie
Hang Du
Dong Yin
Wei Huang
Siqiang Guo
Xiaobo Zhang
Pengbo Hu
    3DV
ArXiv (abs)PDFHTML
Main:9 Pages
16 Figures
Bibliography:3 Pages
6 Tables
Appendix:12 Pages
Abstract

In this study, we present IL3D, a large-scale dataset meticulously designed for large language model (LLM)-driven 3D scene generation, addressing the pressing demand for diverse, high-quality training data in indoor layout design. Comprising 27,816 indoor layouts across 18 prevalent room types and a library of 29,215 high-fidelity 3D object assets, IL3D is enriched with instance-level natural language annotations to support robust multimodal learning for vision-language tasks. We establish rigorous benchmarks to evaluate LLM-driven scene generation. Experimental results show that supervised fine-tuning (SFT) of LLMs on IL3D significantly improves generalization and surpasses the performance of SFT on other datasets. IL3D offers flexible multimodal data export capabilities, including point clouds, 3D bounding boxes, multiview images, depth maps, normal maps, and semantic masks, enabling seamless adaptation to various visual tasks. As a versatile and robust resource, IL3D significantly advances research in 3D scene generation and embodied intelligence, by providing high-fidelity scene data to support environment perception tasks of embodied agents.

View on arXiv
Comments on this paper