All Papers
Title |
|---|
Title |
|---|

In recent years, affiliate marketing has emerged as a revenue-sharing strategy where merchants collaborate with promoters to promote their products. It not only increases product exposure but also allows promoters to earn a commission. This paper addresses the pivotal yet under-explored challenge in affiliate marketing: accurately assessing and predicting the contributions of promoters in product promotion. We design a novel metric for evaluating the indirect contributions of the promoter, called propagation scale. Unfortunately, existing time series forecasting techniques fail to deliver accurate predictions due to the propagation scale being influenced by multiple factors and the inherent complexities arising from dynamic scenarios. To address this issue, we decouple the network structure from the node signals and propose a two-stage solution: initially, the basic self-sales and network structure prediction are conducted separately, followed by the synthesis of the propagation scale. Specifically, we design a graph convolution encoding scheme based on descendant neighbors and incorporate hypergraph convolution to efficiently capture complex promotional dynamics. Additionally, three auxiliary tasks are employed: self-sales prediction for base estimations, descendant prediction to synthesize propagation scale, and promoter activation prediction to mitigate high volatility issues. Extensive offline experiments on large-scale industrial datasets validate the superiority of our method. We further deploy our model on Alimama platform with over promoters, achieving a improvement in GMV and a increase in sales volume.
View on arXiv