50

Compositional Zero-Shot Learning: A Survey

Main:32 Pages
6 Figures
Bibliography:4 Pages
4 Tables
Abstract

Compositional Zero-Shot Learning (CZSL) is a critical task in computer vision that enables models to recognize unseen combinations of known attributes and objects during inference, addressing the combinatorial challenge of requiring training data for every possible composition. This is particularly challenging because the visual appearance of primitives is highly contextual; for example, ``small'' cats appear visually distinct from ``older'' ones, and ``wet'' cars differ significantly from ``wet'' cats. Effectively modeling this contextuality and the inherent compositionality is crucial for robust compositional zero-shot recognition. This paper presents, to our knowledge, the first comprehensive survey specifically focused on Compositional Zero-Shot Learning. We systematically review the state-of-the-art CZSL methods, introducing a taxonomy grounded in disentanglement, with four families of approaches: no explicit disentanglement, textual disentanglement, visual disentanglement, and cross-modal disentanglement. We provide a detailed comparative analysis of these methods, highlighting their core advantages and limitations in different problem settings, such as closed-world and open-world CZSL. Finally, we identify the most significant open challenges and outline promising future research directions. This survey aims to serve as a foundational resource to guide and inspire further advancements in this fascinating and important field. Papers studied in this survey with their official code are available on our github:this https URL

View on arXiv
Comments on this paper