28

Receptive Field Expanded Look-Up Tables for Vision Inference: Advancing from Low-level to High-level Tasks

Main:10 Pages
5 Figures
Bibliography:3 Pages
5 Tables
Abstract

Recently, several look-up table (LUT) methods were developed to greatly expedite the inference of CNNs in a classical strategy of trading space for speed. However, these LUT methods suffer from a common drawback of limited receptive field of the convolution kernels due to the combinatorial explosion of table size. This research aims to expand the CNN receptive field with a fixed table size, thereby enhancing the performance of LUT-driven fast CNN inference while maintaining the same space complexity. To achieve this goal, various techniques are proposed. The main contribution is a novel approach of learning an optimal lattice vector quantizer that adaptively allocates the quantization resolution across data dimensions based on their significance to the inference task. In addition, the lattice vector quantizer offers an inherently more accurate approximation of CNN kernels than scalar quantizer as used in current practice. Furthermore, we introduce other receptive field expansion strategies, including irregular dilated convolutions and a U-shaped cascaded LUT structure, designed to capture multi-level contextual information without inflating table size. Together, these innovations allow our approach to effectively balance speed, accuracy, and memory efficiency, demonstrating significant improvements over existing LUT methods.

View on arXiv
Comments on this paper