ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10116
189
0
v1v2v3 (latest)

Preference-driven Knowledge Distillation for Few-shot Node Classification

11 October 2025
Xing Wei
Chunchun Chen
Rui Fan
Xiaofeng Cao
Sourav Medya
Wei Ye
ArXiv (abs)PDFHTMLGithub (2★)
Main:10 Pages
7 Figures
Bibliography:4 Pages
19 Tables
Appendix:17 Pages
Abstract

Graph neural networks (GNNs) can efficiently process text-attributed graphs (TAGs) due to their message-passing mechanisms, but their training heavily relies on the human-annotated labels. Moreover, the complex and diverse local topologies of nodes of real-world TAGs make it challenging for a single mechanism to handle. Large language models (LLMs) perform well in zero-/few-shot learning on TAGs but suffer from a scalability challenge. Therefore, we propose a preference-driven knowledge distillation (PKD) framework to synergize the complementary strengths of LLMs and various GNNs for few-shot node classification. Specifically, we develop a GNN-preference-driven node selector that effectively promotes prediction distillation from LLMs to teacher GNNs. To further tackle nodes' intricate local topologies, we develop a node-preference-driven GNN selector that identifies the most suitable teacher GNN for each node, thereby facilitating tailored knowledge distillation from teacher GNNs to the student GNN. Extensive experiments validate the efficacy of our proposed framework in few-shot node classification on real-world TAGs. Our code is be available.

View on arXiv
Comments on this paper