
Remote sensing images inevitably suffer from various degradation factors during acquisition, including atmospheric interference, sensor limitations, and imaging conditions. These complex and heterogeneous degradations pose severe challenges to image quality and downstream interpretation tasks. Addressing limitations of existing all-in-one restoration methods that overly rely on implicit feature representations and lack explicit modeling of degradation physics, this paper proposes Physics-Guided Degradation-Adaptive Experts (PhyDAE). The method employs a two-stage cascaded architecture transforming degradation information from implicit features into explicit decision signals, enabling precise identification and differentiated processing of multiple heterogeneous degradations including haze, noise, blur, and low-light conditions. The model incorporates progressive degradation mining and exploitation mechanisms, where the Residual Manifold Projector (RMP) and Frequency-Aware Degradation Decomposer (FADD) comprehensively analyze degradation characteristics from manifold geometry and frequency perspectives. Physics-aware expert modules and temperature-controlled sparse activation strategies are introduced to enhance computational efficiency while ensuring imaging physics consistency. Extensive experiments on three benchmark datasets (MD-RSID, MD-RRSHID, and MDRS-Landsat) demonstrate that PhyDAE achieves superior performance across all four restoration tasks, comprehensively outperforming state-of-the-art methods. Notably, PhyDAE substantially improves restoration quality while achieving significant reductions in parameter count and computational complexity, resulting in remarkable efficiency gains compared to mainstream approaches and achieving optimal balance between performance and efficiency. Code is available atthis https URL.
View on arXiv