ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.07730
52
0

DEAS: DEtached value learning with Action Sequence for Scalable Offline RL

9 October 2025
Changyeon Kim
Haeone Lee
Younggyo Seo
Kimin Lee
Yuke Zhu
    OffRL
ArXiv (abs)PDFHTMLGithub (235★)
Main:9 Pages
6 Figures
Bibliography:6 Pages
9 Tables
Appendix:5 Pages
Abstract

Offline reinforcement learning (RL) presents an attractive paradigm for training intelligent agents without expensive online interactions. However, current approaches still struggle with complex, long-horizon sequential decision making. In this work, we introduce DEtached value learning with Action Sequence (DEAS), a simple yet effective offline RL framework that leverages action sequences for value learning. These temporally extended actions provide richer information than single-step actions and can be interpreted through the options framework via semi-Markov decision process Q-learning, enabling reduction of the effective planning horizon by considering longer sequences at once. However, directly adopting such sequences in actor-critic algorithms introduces excessive value overestimation, which we address through detached value learning that steers value estimates toward in-distribution actions that achieve high return in the offline dataset. We demonstrate that DEAS consistently outperforms baselines on complex, long-horizon tasks from OGBench and can be applied to enhance the performance of large-scale Vision-Language-Action models that predict action sequences, significantly boosting performance in both RoboCasa Kitchen simulation tasks and real-world manipulation tasks.

View on arXiv
Comments on this paper