ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.07648
148
0
v1v2 (latest)

Continual Learning for Adaptive AI Systems

9 October 2025
Md Hasibul Amin
Tamzid Tanvi Alam
    CLL
ArXiv (abs)PDFHTML
Main:2 Pages
4 Figures
Bibliography:2 Pages
1 Tables
Abstract

Continual learning the ability of a neural network to learn multiple sequential tasks without catastrophic forgetting remains a central challenge in developing adaptive artificial intelligence systems. While deep learning models achieve state-of-the-art performance across domains, they remain limited by overfitting and forgetting. This paper introduces Cluster-Aware Replay (CAR), a hybrid continual learning framework that integrates a small, class-balanced replay buffer with a regularization term based on Inter-Cluster Fitness (ICF) in the feature space. The ICF loss penalizes overlapping feature representations between new and previously learned tasks, encouraging geometric separation in the latent space and reducing interference. Using the standard five-task Split CIFAR-10 benchmark with a ResNet-18 backbone, initial experiments demonstrate that CAR better preserves earlier task performance compared to fine-tuning alone. These findings are preliminary but highlight feature-space regularization as a promising direction for mitigating catastrophic forgetting.

View on arXiv
Comments on this paper