106

Benchmarking is Broken - Don't Let AI be its Own Judge

Main:10 Pages
2 Figures
Bibliography:2 Pages
1 Tables
Appendix:2 Pages
Abstract

The meteoric rise of Artificial Intelligence (AI), with its rapidly expanding market capitalization, presents both transformative opportunities and critical challenges. Chief among these is the urgent need for a new, unified paradigm for trustworthy evaluation, as current benchmarks increasingly reveal critical vulnerabilities. Issues like data contamination and selective reporting by model developers fuel hype, while inadequate data quality control can lead to biased evaluations that, even if unintentionally, may favor specific approaches. As a flood of participants enters the AI space, this "Wild West" of assessment makes distinguishing genuine progress from exaggerated claims exceptionally difficult. Such ambiguity blurs scientific signals and erodes public confidence, much as unchecked claims would destabilize financial markets reliant on credible oversight from agencies like Moody's.

View on arXiv
Comments on this paper