ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.02050
81
0

Multidata Causal Discovery for Statistical Hurricane Intensity Forecasting

2 October 2025
S. SaranyaGanesh
Frederick Iat-Hin Tam
Milton S. Gomez
Marie McGraw
Mark DeMaria
K. Musgrave
Jakob Runge
Tom Beucler
    AI4Cl
ArXiv (abs)PDFHTML
Main:15 Pages
24 Figures
Bibliography:4 Pages
7 Tables
Appendix:19 Pages
Abstract

Improving statistical forecasts of Atlantic hurricane intensity is limited by complex nonlinear interactions and difficulty in identifying relevant predictors. Conventional methods prioritize correlation or fit, often overlooking confounding variables and limiting generalizability to unseen tropical storms. To address this, we leverage a multidata causal discovery framework with a replicated dataset based on Statistical Hurricane Intensity Prediction Scheme (SHIPS) using ERA5 meteorological reanalysis. We conduct multiple experiments to identify and select predictors causally linked to hurricane intensity changes. We train multiple linear regression models to compare causal feature selection with no selection, correlation, and random forest feature importance across five forecast lead times from 1 to 5 days (24 to 120 hours). Causal feature selection consistently outperforms on unseen test cases, especially for lead times shorter than 3 days. The causal features primarily include vertical shear, mid-tropospheric potential vorticity and surface moisture conditions, which are physically significant yet often underutilized in hurricane intensity predictions. Further, we build an extended predictor set (SHIPS+) by adding selected features to the standard SHIPS predictors. SHIPS+ yields increased short-term predictive skill at lead times of 24, 48, and 72 hours. Adding nonlinearity using multilayer perceptron further extends skill to longer lead times, despite our framework being purely regional and not requiring global forecast data. Operational SHIPS tests confirm that three of the six added causally discovered predictors improve forecasts, with the largest gains at longer lead times. Our results demonstrate that causal discovery improves hurricane intensity prediction and pave the way toward more empirical forecasts.

View on arXiv
Comments on this paper